极品人生

 找回密码
 注册
搜索
极品人生 主讨论区 器材讨论 › 查看主题

22392

查看

176

回复
返回列表
楼主: Jwang

49#
发表于 2013-7-23 08:14:33 | 只看该作者
"假定一个驻波是两个5dB的100Hz声波造成,这样它的驻波就是10dB。" --这个表述有问题...dB是个相对量, 不能 ...
rock 发表于 2013-7-22 12:08


意思都是一样的。我这里是指的绝对值。

使用道具 TOP

50#
发表于 2013-7-23 09:32:01 | 只看该作者
本帖最后由 Jwang 于 2013-7-23 10:48 编辑
解释甚不科学,不明白,哪本书? 作者谁?

MasterHandbook of Acoustics by Everest, F. Alton and Pohlmann,Ken (Jun 22, 2009)

1,上文中我按照您特指音响房间 " 反射形成的驻波" 这一观点给您留了一面墙, 本意是按照您得意思只要有一面墙发射声波,就会于其它形成驻波,而现在您说一面墙无法形成驻波,求解?  按照本人对您本意的理解, 一面墙发射声波与其它声波形成驻波,怎么不会呢 ? 您得意思是只有两面墙互相发射才能形成驻波 ?

我想了下。你这讲的不无道理。从逻辑上我可以接受种讲法,但有待进一步论证.

但有一点可以肯定,两列波相遇后, 相比之下, 驻波后能传播给人的能量肯定比非驻波情形下少的多,这点谁能否定?   



我的回答是否定的。再来看看宾西法尼亚州立大学声学教授的网站上的说法。这里我不但再次强调驻波的概念,而且也回答了牛仔的问题。这个叠加就是个简单的加总。



The black signal in the animation represents the superposition of these two oppositely directed traveling waves. As these waves pass through each other and add together, they create a standing wave - a pattern which neither moves left or right, but simply oscillates up and down as a function of time. The amplitude of this standing wave is twice that of the individual waves when the two waves are in phase so that peaks and valleys lineup. The amplitude of the standing wave is zero when the two waves are completely opposite phase so that they peaks of one wave line up with the valleys of the other wave; the two wave amplitudes cancel each other out.

驻波可以用下面的公式来描写

ξ(x,t)=ξsin(ωt- kx)+ ξsin(ωt+ kx)

这个黑色的声波代表了两个以相反方向行进的声波的叠加。当这两个声波相互交叉时,它们就形成了驻波,一种即不向左也不向右移动的声波模式,但是随时间上下振荡。当两个单独的声波相位相同从而峰值和低谷都在用一时间点上出现,这个驻波的水平是形成它单独的声波的水平的一倍。当这两个单独的声波相位相反时,从而一个声波的峰值和另一声波的低谷出现在同一时间点上,驻波为零。两个单独的声波互相抵销。

再来看这个数学公式。它表明叠加是种简单的加总。再进一步,驻波ξ(x,t)只能大于或等于两个单个的声波。

如果ξsin(ωt- kx)=0
ξ(x,t)=ξsin(ωt+ kx)

如果ξsin(ωt+ kx)=0
ξ(x,t)=ξsin(ωt- kx)

实际中, ξsin(ωt- kx)=0ξsin(ωt+ kx)=0都不可能存在的。这样, ξsin(ωt- kx)>0,ξsin(ωt +kx)>0故驻波ξ(x,t)必定大于形成它的单个声波。而不是如你所说。

当声波反向交汇的时候, 能够对外继续传送的能量,是驻波时候的多还是非驻波时候的多
?
答案是肯定的, 所以也可以肯定,当嗡嗡声
等明显能量突起的地方,反而不是驻波所导致.

这里逻辑很成问题。不过我先放一放以便先搞清什么是驻波。



5,上面说得是声波的频率,声源的频率当然是没有改变的. 但是,还有我们实际听到的"接收频率", 如果我们乘坐一辆汽车,80公里时速行驶,另外一辆汽车以100公里时速行驶,这辆汽车经过我们时候的声音, 逆向行驶时和同向行驶时,是完全不同的, 逆向经过的时候,听感上,听到的频率要比同向高很多. 音响房间当然也是这样, 如果两列声波逆向交汇,我们人耳的关于频率上的听感,要偏低.

这个车子经过和波形的干扰并没有关系,由于涉及其它,也先放一放。等我们对驻波有了统一概念再讲。



本帖子中包含更多资源

您需要登录才可以下载或查看附件。没有帐号?注册

x

点评

车子现象是两个相对移动的发声点,和音响固定发声点完全不一样,别把波形的传导误作发生点的移动,呵呵,兄钻牛角尖了。  发表于 2013-7-23 17:05
车子的举例,是告诉各位, 除了声源的频率,还有接收频率, 移动的物体和固定的物体,即使其发射的声波频率是固定的,但是人接收到的频率是有差异的.  发表于 2013-7-23 11:25
驻波的能量 和 驻波 能够传送的能量, 是两码事.  发表于 2013-7-23 11:14
哥们儿,您的回答的和我的问题连方向都不一致. 我的问题是 "声波传播的能量,在驻波和非驻波情况下的区别" 而您以 驻波本身的能量来替代驻波能够继续对外传播的能量,这是不对的.  发表于 2013-7-23 11:12

使用道具 TOP

51#
发表于 2013-7-23 09:59:57 | 只看该作者
现场i是环境的调整,因为其叠加来自环境。
录音重放来自系统调整,叠加来自重放过程。
牛仔 发表于 2013-7-23 09:53

我只是在讲重放,即音响重放过程中,在一个特定空间里的驻波(两个相反方向移动的声波的叠加。)

使用道具 TOP

52#
发表于 2013-7-23 23:11:08 | 只看该作者
"假定一个驻波是两个5dB的100Hz声波造成,这样它的驻波就是10dB。" --这个表述有问题...dB是个相对量, 不能 ...
rock 发表于 2013-7-22 12:08


声学里面的dB有统一的参考值,所以实际上是绝对量。

但是Jwang兄这个算法显然是不对的,dB不能简单相加。两个同样大小的信号相加,新信号比原信号大3dB。(也有时是6dB,看dB指的是振幅还是能量。)

使用道具 TOP

53#
发表于 2013-7-23 10:40:49 | 只看该作者

BJMA 发表于 6 分钟前
牛仔兄知不知道什么是近场话筒?现场录音是如何录制的?
B兄,本人不是专业人士。
你有兴趣的话,不妨聊聊,我也有机会学习一下。

使用道具 TOP

54#
发表于 2013-7-23 22:47:31 | 只看该作者
声波应该是纵波吧,楼主的图都是用横波来示范,至少原理不会是这样的。纵波和横波,类似于调频和调幅的概念。
我想,应该先把这个搞清楚,再讨论原波和反射波是怎么作用的。

使用道具 TOP

nba

55#
发表于 2013-7-23 11:09:06 | 只看该作者
我相信通过Jwang和大家的探讨, "驻波"的真相就能明确, 只要探讨的方向正确真理便"渐行渐近", 否则, 方向发生偏差则"渐行渐远", 不过, 我相信Jwang和以上几位"极品人"的能力, 也许能纠正百度百科的解释或定义, 甚至纠正世界级声学专家.


使用道具 TOP

56#
发表于 2013-7-23 11:36:03 | 只看该作者
本帖最后由 LOBO 于 2013-7-23 12:07 编辑

   驻波的能量 和驻波 能够对外传送的能量, 这是两码事.
   
另外, 越是波长越长的声波越是不易被墙反射, 就是说实际上, 偏高频的声波易被墙反射, 但是偏低频的声波不易被墙反射,这点有异议吗?  但 J版说驻波主要针对 300hz 以下的,不知何解?

  另外,诸位一再强调以正弦波基础建立的模型在任何场合都是适用的从而结果是直接的,这点在下不同意. 分析音响驻波,还要用到很多 理论基础 模型工具 ,不是一个正弦波就能解释一切.  按照几位同学的意思,以既定的正弦波理论为基础, 音响的驻波是大量存在的. 我反对,因为, 音响的波形是以正弦波为基础,这是理论基础,但是音响的波形毕竟不是正弦波,直接以正弦波作为模型得到的结果必须因地制宜,假以其它理论的补充或者修正. 如果结果这么容易得来,那么也太容易了.

   还有一点,行波在行进的过程中传送能量, 驻波不再向前推进,因此驻波的能量不能够借助波形的推进而传播, 这点有疑问吗? 按照反方向推理, 假设有两列声波反向交汇(交汇后的各种波形,包括驻波),那么当然会形成各种各样的新的交汇波形, 而驻波本身含的能量肯定比其它波形情形下的能量高, 那么从反向认证向外传播的能量, 驻波情形下最少. 这是能量守恒定律,谁也绕不过去. 难道驻波也能够随着声波的移动而推进? (这个待诸位解释)
   
   另外 B兄说得 漩涡理论,就不参与,了,完全可以另外开帖,详述 声音驻波 和漩涡的关系.兴许更加形象,思路 条理更清晰,但是本人坚决不参与了. 这不是玩笑话,请无曲解. 另外,兄说得因人而异从驻波处获得的能量不同, 我只有一句话,人一般都是坐在皇帝位的,兄完全可以建立一个房间模型,专处理皇帝位的驻波情形. 这也是真心话,不是打诨.

  J版引用的文章是物理驻波模型试验的基础,也只能作为分析音响波形驻波的理论模型之一,不是全部. 音响的波形基础是正弦波,但毕竟不是正弦波. 驻波有严格的物理定义, 两列复杂波形的声波比较两列单纯的正弦波形的声波,要形成驻波,前者要困难的多,谁能够否认这一点?  J版到现在还在一再举 驻波的理论 模型 , 我想说的是,本人完全同意音响房间内有驻波,驻波形成的原理也非常清楚, 但是本人不同意音响房间内大量存在驻波这个说法.  其它的观点不同之处,则不一一再叙了.

使用道具 TOP

57#
发表于 2013-7-24 02:15:00 | 只看该作者
本帖最后由 Rozinante 于 2013-7-24 03:54 编辑
没想明白的是:驻波频率的能量是否会比其他频段衰减得慢?为什么慢?
Rozinante 发表于 2013-7-23 23:18

这个问题我有点想明白了:驻波之所以衰减得慢,恰恰是因为它几乎“不反射”。

我试着用不太准确但是比较形象的语言来表述一下:行波中空气分子会撞在墙上弹回来。“弹”的这一下会消耗很多能量,声音能量的大部分其实都是这样消耗掉的。而在驻波里,空气分子还没有撞到墙,就减慢了,再往相反方向运动。这在首贴那个画满了小黑点的图里可以很清楚地看出来。这样碰撞造成的能量损耗就小得多。(说明一下,这个说法很不准确,因为空气分子本身在做大量的无规则运动;但是仅研究声波的问题,这个“一堆小点来回振动”的模型还是很好用的。)

也可以换一个角度来理解,即把驻波看作行波的叠加:叠加的结果是反射点永远是波的“节点”,所以反射造成的能量损耗达到极小。而行波的反射点是波峰波谷交替,会碰撞掉很多能量。

使用道具 TOP

58#
发表于 2013-7-24 02:34:37 | 只看该作者
你们讲的对,两个dB不能这样加。我原本是指两个声波的水平的加总。

使用道具 TOP

59#
发表于 2013-7-24 09:09:39 | 只看该作者
本帖最后由 Jwang 于 2013-7-24 09:33 编辑
驻波的能量和驻波能够对外传送的能量, 这是两码事.

这里这种讲虽不合理,但至少有进步。我看了下百度的驻波的条文。我可以说这点。它那里说的驻波绝对不是我在谈的驻波,或许是海洋学中的某些现象。

这里在下述的前提下,我可同意你的讲法。

假定说”不能够对外传送的能量”是指不能听见,我不同意你的观点。
假定说”不能够对外传送的能量”但是能听见,我同意你的观点。


但 J版说驻波主要针对 300hz 以下的,不知何解?

这里我抄三段英文,它们是从下面三本书中的。

第一本是:


David M. Howard; James Angus:Acoustics and Psychoacoustics

Because all rooms have modes in their lower frequency ranges
there will always be a frequency below which the modal effects
dominate and the room can no longer be treated as diffuse. Even
anechoic rooms have lower frequency limits to their operation.
One of the effects of room modes is to cause variations in the
frequency response of the room, via its effect on the reverberant
field. The frequency response due to modal behaviour will also
be room position dependent, due to the spatial variation of
standing waves. An important consequence of this is that the
room no longer supports a diffuse field in the modal region and
so the reverberation time concept is invalid in this frequency
region. Instead an approach based on modal decay should be
used. But at what frequency does the transition occur, can it be
even calculated? Consider the typical frequency response of a
room, shown in Figure 6.39. In it, three different frequency
regions can be identified.




The cut-off region: the region below the lowest resonance,
sometimes called the room cut-off region. In this region the
room is smaller than a half wavelength in all dimensions.
This does not mean that the room does not support sound
propagation, in fact it behaves more like the air in a bicycle
pump when the end is blocked. This means that the environment
‘loads’ any sources of sound in the room differently
(such as loudspeakers or musical instruments), and often the
effect of this loading is to reduce the ability of the source to
radiate sound into the room and so result in reduced sound
levels at these frequencies. The low frequency cut-off can be
calculated simply from:



• The modal region: the next region is the modal region in
which the modal behaviour of the room dominates its
acoustic performance. In this region the analysis based on
the assumption of a diffuse field is doomed to fail.

• The diffuse field region: the final region is the region in which
a diffuse field can exist and therefore the concept of reverberation
time is valid. In general this region of the frequency
range is the one that will sound the best, providing the
reverberation characteristics are good, because the effects of
room modes are minimal and so the listener experiences an
even reverberant sound level throughout the room.

The transition boundary between the region of modal behaviour
and the region of diffuse behaviour is known as the critical
frequency. As is usual in these situations, although the critical
frequency is a single frequency it is not a sharp boundary, it
represents some defined point in a transition region between the
two regions.

第二本是:

Floyd Toole: Sound Reproduction, Loudspeakers and Rooms

Our understanding of these perceptual factors is not yet complete, but there
is a lot of information in the accumulated literature of architectural acoustics.
Complicating the situation is the fact that several of these effects can coexist,
interacting with each other, and that the relationships can be different, at least



in some degree, for different kinds of sounds. A lot of the pioneering work was
done using speech at the test signal and, although it is fundamentally important,
it is not the only sound we listen to. Similarly, many experiments examined the
effects of a single refl ection auditioned in an otherwise refl ection-free environment.
It will be found that some conclusions need to be modifi ed for normally
reflective spaces. When looking at the results of data gathered in “scientifi c”
circumstances, it is essential to think carefully before drawing conclusions about
what may or may not be important in real-world situations.

We know that in real rooms there are multiple refl ections. However, to
understand the infl uence of many, it is useful to begin by understanding the
infl uence of a few, or even one. It also makes experiments practical and controllable.
As will be seen, there is a logical progression of effects from a single to
multiple refl ections, giving us, in the end, a better insight into the perceptual
mechanisms at play.

All of the effects being discussed have portions of the frequency range over
which they are most noticeable. Figure 5.2 includes a repetition of Figure 4.12,
which illustrates that, in terms of physical acoustics, the frequency range is
divided into two regions connected by a broad transition zone. Under it is an
attempt to show the frequency ranges over which various audible effects of
refl ections are most likely to be heard. As we will see, these are very approximate
divisions, subject to variations with different program material, reproduced in
different environments, and so on. They will be shown at the beginning of each
relevant chapter and will be discussed at that point.

第三本是:

F.Alton Everest & Ken C Pohlmann: Master Handbook of Acoustics

The audible spectrum is very wide when viewed in terms of wavelength. At 16 Hz,
considered the low-frequency limit of the average human ear, the wavelength is
1,130/16 = 70.6 ft. At the upper limit of hearing, say 20 kHz, the wavelength is only
1,130/20,000 = 0.056 ft or about 0.7 in. The behavior of sound is greatly affected by the
wavelength of the sound in comparison to the size of objects encountered. In a room,
sound of 0.7-in wavelength is scattered (diffused) significantly by a wall irregularity of
a few inches. The effect of the same irregularity on sound of 70-ft wavelength would
be insignificantly small. The heart of the acoustical problem is that no single analytical
approach can cover sound of such a wide range of wavelengths.

In considering the acoustics of small rooms, the audible spectrum can be arbitrarily
divided into four regions: A, B, C, and D, as shown in Fig. 13-6. Room size determines
how the audible spectrum must be divided for acoustical analysis. Very small rooms,
with too few modal resonances spaced too far apart, are characterized by domination of
a great stretch of the audible spectrum by modal resonances.




Region A is the very-low-frequency region below a frequency of 1130/2L or 565/L,
where L is the longest dimension of the room. Below the frequency of this lowest axial
mode, there is no resonant support for sound in the room. This does not mean that such
very-low-frequency sound cannot exist in the room, only that it is not boosted by room
resonances because there are none in that region.

Region B is that region in which the dimensions of the room are comparable to the
wavelength of sound being considered. It is bounded on the low-frequency end by the
lowest axial mode, 565/L. The upper boundary is not definite but an approximation is
given by what has been called the cutoff or crossover frequency given by the equation:



where F2 = cutoff or crossover frequency, Hz
RT60 = reverberation time of the room, sec
V = volume of the room, ft3

Region C is a transition region between region B, in which wave acoustics must be used,
and region D in which ray acoustics are valid. It is bounded on the low-frequency end
approximately by the cutoff frequency F2 and on the high end approximately by F3 = 4F2.
This region is more difficult to analyze, dominated by wavelengths often too long for
ray acoustics and too short for wave acoustics.

Region D describes the spectral area above F3 that covers higher audible frequencies
with short wavelengths; geometric acoustics apply. Specular reflections (angle of incidence
equals angle of reflection) and the sound ray approach to acoustics prevail. In
this region statistical approaches are generally possible.

In summary, as an example, consider a room measuring 23.3 × 16 × 10 ft. Volume is
3,728 ft3, and reverberation time is 0.5 second. Region A is below 565/23.3 = 24.2 Hz.
There is no resonant boost for sound. Region B is between 24.2 and 130 Hz. The wave
acoustical approach of modal resonances is used to predict response. Region C is
between 130 Hz and (4)(130) = 520 Hz. This is a transitional region. Region D is above
520 Hz. The modal density is very high, statistical conditions generally prevail, and
geometrical acoustics can be used.

本帖子中包含更多资源

您需要登录才可以下载或查看附件。没有帐号?注册

x

点评

我在同济 安恒利 编著的这本书中, 描述声波交汇时用到的模型可不是正弦波. 这个等本人假以时日再与专业人士学习后再探讨吧.  发表于 2013-7-24 17:44
无论如何, 驻波能够对外传送的能量,比起行波,要差的远.我一再提醒大家, 驻波发生的条件是很苛刻的,物理模型中形成容易,在诸多波形混杂 空间不规则的环境中,则极难.  发表于 2013-7-24 17:42
声波是纵波(是疏密波), 不能否认在驻波中的空气分子与其它空气分子相接触的时候,能量依然能够转移, 但是不要忘记, 驻波的条件会马上被打破.这就像一旦有外力介入, 匀速运动马上被打破是一个道理.  发表于 2013-7-24 17:37
驻波中的空气分子只要接触到其它空气分子或者其它介质, 就能够转移能量,只要有能量到达人耳,就能被听见. 不过因为驻波不再推进,能够到达人耳的能量就很少.除非人就在驻波边上而且驻波很强.  发表于 2013-7-24 17:28

使用道具 TOP

nba

60#
发表于 2013-7-24 14:20:56 | 只看该作者
回复 Jwang 的帖子
不懂英文, 这里是否有说到300HZ以下传播的方向性?

   

点评

声波都是纵波(疏密波), 说低频波形指向性低,是因为低频的波长,穿越物体的能力强而已.  发表于 2013-7-24 19:13

使用道具 TOP

极品人生 ( 粤ICP备08007514号)

GMT+8, 2024-12-1 19:45, Processed in 0.049075 second(s), 20 queries.

Powered by Discuz! X3.2

© 2001-2010 Comsenz Inc.